Tumor suppressor LKB1 inhibits activation of signal transducer and activator of transcription 3 (STAT3) by thyroid oncogenic tyrosine kinase rearranged in transformation (RET)/papillary thyroid carcinoma (PTC).
نویسندگان
چکیده
The tumor suppressor LKB1 (STK11) is a cytoplasmic/nuclear serine/threonine kinase, defects in which cause Peutz-Jeghers syndrome (PJS) in humans and animals. Recent studies showed that loss of function of LKB1 is associated with sporadic forms of lung, pancreatic, and ovarian cancer. In cancer cells, LKB1 is inactivated by two mechanisms: mutations in its central kinase domain or complete loss of LKB1 expression. Inactivation of LKB1 is associated with progression of PJS and transformation of benign polyps into malignant tumors. This study examines the effect of LKB1 on regulation of STAT3 and expression of transcriptional targets of STAT3. The results show that LKB1 inhibits rearranged in transformation (RET)/papillary thyroid carcinoma (PTC)-dependent activation of signal transducer and activator of transcription 3 (STAT3), which is mediated by phosphorylation of STAT3 tyrosine 705 by RET/PTC. Suppression of STAT3 transactivation by LKB1 requires the kinase domain but not the kinase activity of LKB1. The centrally located kinase domain of LKB1 is an approximately 260-amino-acid region that binds to the linker domain of STAT3. Chromatin immunoprecipitation studies indicate that expression of LKB1 reduces the binding of STAT3 to its target promoters and suppresses STAT3-mediated expression of Cyclin D1, VEGF, and Bcl-xL. Knockdown of LKB1 by specific small interfering RNA led to an increase in STAT3 transactivation activity and promoted cell proliferation in the presence of RET/PTC. Thus, this study suggests that LKB1 suppresses tumor growth by inhibiting RET/PTC-dependent activation of oncogenic STAT3.
منابع مشابه
Regulation of protein kinase B tyrosine phosphorylation by thyroid-specific oncogenic RET/PTC kinases.
Papillary thyroid carcinoma (PTC) is a heterogenous disorder characterized by unique gene rearrangements and gene mutations that activate signaling pathways responsible for cellular transformation, survival, and antiapoptosis. Activation of protein kinase B (PKB) and its downstream signaling pathways appears to be an important event in thyroid tumorigenesis. In this study, we found that the thy...
متن کاملThe Ca2+-calmodulin-dependent kinase II is activated in papillary thyroid carcinoma (PTC) and mediates cell proliferation stimulated by RET/PTC.
RET/papillary thyroid carcinoma (PTC), TRK-T, or activating mutations of Ras and BRaf are frequent genetic alterations in PTC, all leading to the activation of the extracellular-regulated kinase (Erk) cascade. The aim of this study was to investigate the role of calmodulin-dependent kinase II (CaMKII) in the signal transduction leading to Erk activation in PTC cells. In normal thyroid cells, Ca...
متن کاملSTAT3 negatively regulates thyroid tumorigenesis.
Although tyrosine-phosphorylated or activated STAT3 (pY-STAT3) is a well-described mediator of tumorigenesis, its role in thyroid cancer has not been investigated. We observed that 63 of 110 (57%) human primary papillary thyroid carcinoma (PTC) cases expressed nuclear pY-STAT3 in tumor cells, preferentially in association with the tumor stroma. An inverse relationship between pY-STAT3 expressio...
متن کاملRET/papillary thyroid carcinoma oncogenic signaling through the Rap1 small GTPase.
RET/papillary thyroid carcinoma (PTC) oncoproteins result from the in-frame fusion of the RET receptor tyrosine kinase with protein dimerization motifs encoded by heterologous genes. Here, we show that RET/PTC1 activates the Rap1 small GTPase. The activation of Rap1 was dependent on the phosphorylation of RET Tyr(1062). RET/PTC1 recruited a complex containing growth factor receptor binding prot...
متن کاملInhibition of RET tyrosine kinase by SU5416.
Thyroid neoplasia is frequently associated with rearranged during transfection (RET) proto-oncogene mutations that cause hyperactivation of RET kinase activity. Selective inhibition of RET-mediated signaling should lead to an efficacious therapy. SU5416 is a potent inhibitor of vascular endothelial cell growth factor receptor, c-Kit, and FLT-3 receptor tyrosine kinases presently used in clinica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular endocrinology
دوره 21 12 شماره
صفحات -
تاریخ انتشار 2007